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Disclaimer
This document was prepared as an account of work sponsored by an agency of the
United States government. Neither the United States government nor Lawrence
Livermore National Security, LLC, nor any of their employees makes any warranty,
expressed or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the United States government or
Lawrence Livermore National Security, LLC. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore National Security, LLC, and shall not be used for
advertising or product endorsement purposes.
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Roadside Radar Vehicle Identification

Problem Definition
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A Challenge

Scenario:

The universe consists solely of one road, one fixed wide band
pitch/catch radar, one computer, and a set of vehicles passing on

the road.

Challenge:

Determine as much information as possible from the single, fixed,
wide band radar observing vehicles passing on the road.

I This is a type of inverse synthetic aperture radar (ISAR).

I Vehicle velocities are unknown and must be determined from
the data.
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Scenario & Geometry

A single, road side wide band radar collects data in a monostatic
“pitch/catch” operating mode.
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Roadside Radar Vehicle Identification

Solution
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Inverse Synthetic Aperture Radar

I Mathematically, Cheney & Borden show in “Imaging Moving
Targets from Scattered Waves”, Inverse Problems, 24, 2008,
imaging can be achieved in a Range/Velocity space.

I However, an azimuthal velocity estimate can be achieved
through geometric analysis of the multimonostatic hyperbolic
move out curves.

hv,θ(ts) = |x0 + vts −Rxvr| ,

=

√
(x0 + vxts − xxvr)2 + (y0 + vyts − yxvr)2

ts ≡ n∆ts is the slow time,
n is the slow time index,

∆ts is the slow time sample interval,
v is the vehicle velocity (the vertical velocity is assumed

to be zero), (vx, vy) ≡ v(cos θ, sin θ),
Rxvr is the transceiver location.

Two points are selected on the move out curve and hv,θ(ts) is solved
for the velocity.

This is used to distinguish vehicles which have identical lengths in
measurement space.
Imaging is achieved in Range/Azimuth space.
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Moving Line Move Out Curve

Vehicle as moving line

Fast Time or Range

Slow Time or “Position”

hv,θ(ts) =



√
(vts cos θ + L/2)2 + (vts sin θ + y0)

2 vts cos θ < −L2

vts sin θ + y0 |vts cos θ| ≤ L
2√

(vts cos θ − L/2)2 + (vts sin θ + y0)
2 vts cos θ >

L
2

Do not yet have a solver for this.
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Roadside Radar Vehicle Identification

Simulation
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Simulation: Use Line Length to Distinguish “Vehicles”

Proof-of-concept simulations were performed using “vehicles” of
two different lengths
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Ambiguity Resolution & Geometric Velocity
Determination

Lines may have identical lengths in measurement space but
differing hyperbolae.

An incorrect geometric measurement may
result in errors.

hv,θ(n) =
∣∣x0 + nv∆ts − R

xvr∣∣ ,
=

√
(x0 + nv cos(θ)∆ts − xxvr)2 + (y0 + nv sin(θ)∆ts − yxvr)2
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10 m/s; 0 & 5 degrees

5 meter line length; 10 m/s; 3.25 s observation time
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Geometric Velocity : [10.80 11.56] m/s; Mean: 11.18 m/s
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Number of Returns: 130
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10 m/s; 0 & 5 degrees; Migrations
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20 m/s; 0 & 5 degrees
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20 m/s; 0 & 5 degrees; Migrations
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Summary & Conclusions

I Challenge problem: Determine as much information as
possible from a single, fixed, wide band radar observing
vehicle passing on a road.

I A simulated proof-of-concept used line length to distinguish
“vehicles” successfully.

I But an accurate velocity estimation is required.
I Open questions:

I What is sufficient information for uniquely distinguishing
vehicles?

I What is the minimum significant feature size?
I What are the optimal radar & pulse for maximizing derived

vehicle information?
I What is the optimal method for automatically deriving vehicle

velocity from the data?
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